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POTENTIAL METHOD TO LAMINAR CUBE FLOW 

ROBIN RAUL, PETER S. BERNARD AND FRANK T. BUCKLEY, JR. 
Department of Mechanical Engineering, The University of Maryland, College Park, M D  20742, U.S.A. 

SUMMARY 
Three-dimensional incompressible laminar flow around a cube is investigated using the vorticity-vector 
potential formulation of the equations of motion. Numerical solutions to a semi-implicit finite difference 
approximation to the vorticity transport equation coupled to discrete Poisson equations for the scalar and 
vector potentials are obtained using an eight-colour SOR algorithm. Calculations are done at a range of 
Reynolds numbers from 10 to 100. The predicted drag and other flow characteristics are found to agree well 
with experimental results, including those from a cube drop experiment performed for the present study. 
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1. INTRODUCTION 

Numerical schemes for computing three-dimensional flow fields have largely been based upon the 
primitive variable formulation of the Navier-Stokes equation. In contrast, two-dimensional flows 
are quite commonly calculated using vorticity-streamfunction methods. To some extent this 
turnabout is a result of the additional storage requirements and lingering conceptual problems 
concerning boundary conditions which are associated with the three-dimensional analogue of the 
streamfunction, namely the vector potential. These limitations have often appeared to outweigh 
the potential benefits accruing from the use of the vector potential, which include the exact 
satisfaction of the continuity condition and elimination of the computational effort needed to 
accurately compute the pressure field at each time step. The advent of supercomputers, with their 
large fast memories, however, has made storage limitations less critical so that the development of 
vector potential methods with improved boundary conditions has become the object of much 
recent interest.' -3 

In some circumstances the use of the vorticity as the dependent variable is highly desirable or 
even essential as, for example, in the calculation of turbulent flows using a vorticity-based 
turbulence closure scheme.4g In this case a primitive variable approach is impractical since the 
implementation of the vorticity closure technique in this context requires overcoming many, as yet 
unsolved, technical problems. 

The vorticity-vector potential approach has been the subject of much investigation since Aziz 
and Hellums6 showed that it can lead to relatively fast and stable simulations of three-dimensional 
flows. Hirasaki and Hellums7 formally derived a set of consistent boundary conditions for the 
vector potential which, while practical in the case of confined flows, were too complex for use in 
problems with flowthrough, as in a duct. Later Hirasaki and Hellums' and Richardson and 
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Cornishg added a scalar potential to the formulation and showed that the boundary conditions on 
the vector potential could be greatly simplified in this case. Wong and Reizes' claimed that 
inclusion of a scalar potential can in fact destroy a major advantage inherent in the vector 
potential, which is to assure local and global continuity. Later Tutty,2 contradicting Wong and 
Reizes, argued that the use of a scalar potential does not interfere with the satisfaction of 
continuity, though it can lead to difficulties at sharp corners, where the scalar potential boundary 
condition is discontinuous. 

In recent years the vorticity-vector potential approach has been used to study a variety of three- 
dimensional flow fields. Among these, Wu et ~ 1 . ~ '  studied unsteady problems, Wong and Reizes' 
applied it to three-dimensional multiply connected regions, Morino' extended the method to 
compressible viscous unsteady flows and Yang and Camarero' considered duct flows. Improve- 
ments in computational efficiency resulting from a new set of boundary conditions for the vector 
potential have also been reported for the case of annular flows3 

In the present paper, computations of the three-dimensional laminar incompressible uniform 
flow around a cube are described. The vorticity-vector potential formulation given by Richardson 
and Cornish' is followed. Calculations are done at Reynolds numbers between 10 and 100. The 
importance of such bluff body flows is evident in many fields, such as automotive aerodynamic 
design and the prediction of wind forces on tall structures. Computation of cube flow in the more 
realistic case of high Reynolds numbers, when turbulence is present, will be the next step in the 
current research programme. 

The numerical scheme which is used consists of a fully vectorizable eight-colour SOR algorithm. 
This is employed to solve the four discrete Poisson equations for scalar and vector potentials plus 
semi-implicit finite difference approximations to the three vorticity equations. The computed drag 
compares well with related experimental data, including the results of a cube drop experiment 
which were done in support of the present study. Other characteristics of the solution appear to be 
in agreement with similar bluff body flow fields. 

The next section contains a brief description of the present flow field as well as the appropriate 
governing equations. In Section 3 some computational details of the numerical scheme including 
the treatment of boundary conditions are presented, while Section 4 discusses the drag data 
obtained from the cube drop experiments. Finally, Section 5 contains numerical results followed 
by Section 6 in which conclusions are given. 

2. FORMULATION 

The flow field considered here is shown in Figure 1. The computational domain is a rectangular 
parallelepiped region surrounding a cube situated at  its centre, in which x is the streamwise 
direction and y and z are spanwise directions. Lengths are scaled by the cube diameter. The 
boundaries of the flow domain are assumed to be in the far field of the cube flow. The 
dimensionless lengths of the computational domain are L,, L, and L,. For most calculations these 
lengths were given a magnitude of 10 cube diameters, a distance which appeared to be, after some 
testing, large enough so that the solutions were for the most part independent of them. Generaily, 
the inherent symmetries of the cube flow field were utilized so that just a quarter-domain solution 
was obtained. This allowed for better grid resolution and wider far field boundaries. Some 
calculations were also performed using a mesh covering the whole domain as well. These served 
both as a check on the quarter-domain calculations and as preparation for later studies of non- 
symmetrical cases. 
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Figure 1. Computational domain 

The vorticity transport and continuity equations in three-dimensional laminar incompressible 
flow are respectively 

where 

G e )  

aw 
- + (u.V)w - (W*V)U = - v2w, 
at 

w = v x u  (3) 
is the vorticity vector, u=(u, u, w)  is the velocity vector and Re is the Reynolds number based on 
cube diameter and free stream velocity U,. Introducing a vector potential Y and a scalar potential 
4, u may be written as 

u = v 4  +v  x Y.  (4) 

v24 = 0. (5 )  

Since V.(V x Y )  = 0, substitution of equation (4) into equation (2) gives 

A relation between Y and w is obtained by taking the curl of equation (4), which yields 

V(V.Y) - V2V = w. 

Since the decomposition (4) is not unique, for convenience V can be chosen to be solenoidal, i.e. 

and hence 
v-Y =o, 
v21= - w. 

Equations (1) and (4)-(6) are sufficient to determine the complete cube flow field once the 
appropriate boundary conditions are specified. 

Consistent with References 8 and 9, the boundary conditions for the present calculation may be 
taken as the following. For 4, the condition 

= A W  (7) 
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must be satisfied on all boundaries. Here A is the outward drawn unit normal. On the cube surfaces 
equation (7) reduces to a4/an=O in view of the non-penetration condition. On the outer 
boundaries u is not known a priori, but it may be approximated using 

where 

is the potential field due to a sphere of volume equal to that of the cube, a, is the sphere diameter 
and U, is the upstream velocity. In the distant far field as L,, L,, Lz+ 00, u and us become equal.I4 

The vector potential satisfies the conditions 

= t,bt2 =a$,,/& = 0 (10) 

on solid surfaces, where the subscripts ‘t’ and ‘n’ denote tangential and normal components 
respectively. Since the flow is assumed to be fully developed on the outer boundaries, the soft 
boundary c~nd i t ion ’~  

a2t,bi/an2 = 0, 

where i =  1, 2, 3, was used at these locations. 

cube face normal to + y ,  
On the cube boundaries w was obtained directly from its definition, so that, for example, on the 

o1 = aw/ay, o2 = 0, o3 = - au/ay. 

Here ol, u2 and o3 are the scalar components of w. On the outer boundaries the vorticity 
derivatives appearing in equation (1) were approximated using one-sided differences so as to 
obviate the need for w boundary conditions in these locations. For the calculations performed in 
the quarter domain, the appropriate symmetry and antisymmetry boundary conditions on 4, \y 
and w were incorporated at the symmetry planes of the reduced domain. 

Prediction of the total drag on the cube, which contains viscous or skin friction drag and 
pressure drag components, depends on a knowledge of the shear stresses and pressure distribution 
over the cube surfaces. The shear stresses, which contribute to viscous drag, are directly 
proportional to the local tangential vorticity components on each surface of the cube. Thus, for 
example, on the surface with + y normal the viscous drag is given by 

+ l / 2  + l / 2  

-1/2 - l / 2  
D,.=pJ J o,dxdz. 

Expressions such as this were evaluated using the two-dimensional trapazoidal rule.” 
The pressure P may be obtained as the solution to the Poisson equation 

V2P - V(u x w) = 0, (12) 

which follows by taking the divergence of the Navier-Stokes equation. Neumann-type boundary 
conditions for P may be derived at the cube surfaces from the momentum equation. For example, 
at the surface with normal in the +y-direction, 
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At the outer boundaries soft conditions were applied, i.e. the second derivatives of P in the 
outward normal direction were set to zero. 

3. COMPUTATIONAL SCHEME 

Figure 2 shows the finite difference mesh used in the quarter-domain calculation. The quarter of 
the cube which is indicated occupies the region - 0.5 G x < 0 5 ,  - 0.5 6 y, z GO. The physical co- 
ordinate mesh was transformed to a uniform grid in a curvilinear co-ordinate system sl, s2, s3. In 
each co-ordinate direction an orthogonal mapping of the general form 

sy + (0.5 - y )  [Ys - i s 3  + 3 ~ 5 ] ,  I X i  1 ~ 0 . 5 ,  
1 X i l 2 0 . 5  (141 { 0-5 + y(s - l)&- ') 

x ( s )  = 

was used. Here y = h N,/ (N, -  1) and 

where N is the total number of grid points in the particular direction, L is the extent of the 
computational domain, N ,  is the grid point of the lower cube surface, 2 N ,  is the number of grid 
points spanning the cube and h and M are adjustable parameters coptrolling the density of the 
placement of mesh points. The two functions in equation (14) are continuous through second 
derivatives at the point where they meet at the cube boundary. Nominal values of the grid 
parameters used in this study were N ,  = 69, N ,  = 35, N ,  = 35, N ,  = 27, N ,  = 17, M = 2 and h = 0.2. 
Some variations in these quantities were made to test the grid sensitivity of the computed 
solutions, which was found to be within acceptable limits. 

Numerical solutions to the cube flow field were obtained by solving finite difference approxi- 
mations to equations (l), (4H6) and (12)  transformed into the si co-ordinate system. Second-order 
spatial differencing was incorporated throughout. Central differencing was used in the interior 
and one-sided differencing at the boundaries. Note that the forcing term in equation (12)  is 
effectively first-order accurate since it depends on derived quantities. For the vorticity equation, a 
first-order semi-implicit time discretization was employed. For a complete discussion of the 
computational scheme and differenced form of the transformed equations, see Reference 16. 

The implicit finite difference equations were solved iteratively on the three-dimensional mesh 
using an eight-colour SOR algorithm. In this approach, eight sweeps through the mesh are 

Figure 2. Grid in quarter domain 
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performed, updating just every other nodal value in the three directions. The starting point for 
each of the passes through the mesh varies in turn over the eight nodes of the grid box with corners 
(i, j ,  k), 1 < i,j, k < 2. This algorithm allows for full vectorization in that the mesh points updated in 
each sweep are non-adjacent so they may be relaxed in parallel. The relaxation factors used in 
solving the equations for 4, I, w and P were 1.04, 1.7, 1.0 and 1.8 respectively. Equation ( 5 )  was 
solved at the inception of the calculations and the result stored for subsequent use. 

In the Reynolds number range considered here, no evidence of vortex shedding was observed. 
Consequently, the numerical solutions were marched forward in time until a steady state 
condition was reached. At each time step the discrete equations were solved using a convergence 
criteria in which the global L2 norm 

/ \ 1 / 2  

Here f represents any of the variables 4, I, w or P ,  I denotes the iteration step in the SOR 
algorithm, n is the time step and the summation is over the three-dimensional mesh. Convergence 
to a steady solution was considered accomplished when IIW''" -w"1I2 < lo-'. 

The implementation of the boundary conditions on the sharp edges and corners of the cube 
required special consideration. To avoid a singularity in the normal direction at the cube surface, 
it was assumed that the cube, however well machined, would have a finite radius at the edges and 
corners. In accordance with this concept, the boundary condition on 4 at an edge like that in 
Figure 3(a) was taken as 

4 i + l , j + l , k - 4 i , j , k  = 0, 
An 

while at a corner as in Figure 3(b) it becomes 

d i + l , j + l , k + l - 4 i , j , k  
- 0. An 

At the edge shown in Figure 3(a) unit vectors in the normal and tangential directions are given 
by - -  1 - - 1  

i'i=(i+j)3, t, =(i-j)3, i 2 = E .  

The boundary condition on the tangential components of I was implemented by setting 

and 

For the normal component 

I.i, = - *2) = 0 

v-iz = +3 = 0. 

1 
#n=Y.fi=($1 +$2)- Jz' 

the condition 

implies that 
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i+,l,j+l,k 

Figure 3(a). Edge differencing 

/ 
Figure 3(b). Corner differencing 

After replacing the derivatives in this expression with forward differences, using equation (15) and 
assuming Ax = Ay, it follows that 

$1 ,,,, = $&,.k =a[($, + $2)i+ 1,j.k -f- ($1 -k $2)i,j+ l , k l *  (17) 
A similar analysis applied to a corner such as that depicted in Figure 3(b) .yields the following 
result: 

$It.,.&= $&,,* = $3f,,.t =4 [(*l + $2 +If /&+ lJ.k +($l + $2 + $3)i,j+ l , k  +($1 + $2 +$3)i ,j,k+ 11 .  

Boundary conditions for the remaining edges and corners can be derived by generalizing this 
argument. 

Several other formulations of boundary conditions on the corners and edges of the cube were 
examined, including one in which these points were assumed to be in the interior of the flow. While 
all the approaches led to similar gross characteristics of the computed flow field, the current one 
appears to give substantially better drag predictions than the others. The formulae given here also 
did not appear to produce the numerical errors at the corners which were cited in Reference 2. 

4. EXPERIMENTAL RESULTS 

An extensive literature survey was unable to locate experimental data concerning the laminar flow 
around a cube in free uniform flow. Hence, to aid in verifying the numerical calculations, an 
experiment was designed to obtain the drag coefficient of a cube in laminar flow at a range of low 
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Reynolds numbers. This consisted of dropping a series of cubes of various diameters a and weights 
Win a tank of glycerine of density pe. After determining the cubes had reached terminal speed u,, 
the drag coefficient C, was computed from the relation 

which expresses the balance of forces acting on the cube. 
For the experiment a glass tank of diameter d = 8" and height 4' was used. The tank was filled 

with glycerine whose kinematic viscosity was measured independently using a capillary vis- 
cometer. Plexiglas cubes of various dimensions were constructed with a slice of aluminium at one 
end so as to enhance their stability during the fall. The cube weights were varied through the 
addition of small weights to a cylindrical cavity drilled in the top of the cube. In this way a large 
range of Reynolds numbers could be generated. In order to eliminate wall effects, the experiment 
was repeated for several different cube sizes with the results then extrapolated to the case where the 
walls are at infinity. Cubes of dimension 1.0', 15", 2*0', 2.5" and 3.0' were used. The Reynolds 
number versus C,, was plotted for the five cases on a log-log scale. A separate plot of CD versus aid 
was then constructed for a set of given Reynolds numbers. In order to extrapolate the results to 
a/d=O, an equation was fitted through these data points. A best fit was found to occur for the 
relation 

ln(C,)= 1.7 + 19.8(a/d)3, 

where it is assumed that as a/d+O the slope of these curves approaches zero. The extrapolated 
data were subsequently used to test the accuracy of the computed solutions. This will be described 
in the next section. 

5. NUMERICAL RESULTS 

Calculations were performed on the San Diego Supercomputer Center (SDSC) CRAY X-MP/48 
whose four CPUs provide a theoretical peak speed of 840 Mflops (millions of floating-point 
operations per second). Approximately two million words of fast memory is available to users. In 
view of the large number of arrays necessary to store for the present numerical scheme, the largest 
grid which could be accommodated was limited to approximately 100 OOO nodes. The typical mesh 
used in the study, which had 69 x 35 x 35 = 84 525 grid points covering the quarter domain, was 
close to this limit. 

The SOR relaxation in the case of w required approximately 10 iterations for I I ~ ' + ~ * " - w ~ * " l l ~  
while YT converged in about 20 iterations. These values reduced to 1 as the overall 

convergence of w progressed. Approximately 1500 time steps were sufficient for convergence in the 
w field. For the calculation of 4 and P, on the order of lo00 iterations were needed for convergence. 
With good initial conditions this number could be reduced substantially. 

Calculations were done for Re = 10,20,30,40,60,80 and 100. It took typically about 10 min of 
CPU time to get solutions for 4 and about 2 h of CPU time to get complete solutions. Since many 
of the Re cases were started from previously converged solutions obtained at lower Re, 
significantly less time was needed for these calculations. 

Comparison of the calculated drag with the cube drop experiment is shown in Figure 4. To 
cover the Reynolds number range above 20, for which data from other experiments or calculations 
could not be found, the equivalent drag data for square plates held normal to the flowI7 is given. 
Presumably, the trend in this data, except at the lowest Reynolds numbers, should have some 
relevance to the cube flow field. It is evident that the calculations compare well with the 



VORTICITY-VECTOR POTENTIAL METHOD 883 

u: w 
0 

%'- 
I3 I I , , I ,  , 

lb lid 
RE 

'lb. 

Figure 4. Computed and experimental drag versus Re: 0, calculations; - - - -, cube drop experiments; -, plates 

experimental results. The computed drag of the cube is a little higher than that of square plates, 
which is perhaps expected, since the added extra dimension of the three-dimensional cube gives a 
mechanism for higher viscous drag. 

The calculated pressure and skin friction drag coefficients are plotted in Figure 5 as a function of 
Re. The trend conforms to the expected variation of these quantities with each other and with 
Reynolds number. In particular, at low Re there is little separation and the drag is mostly viscous. 
As Re is increased, separation of the flow becomes more pronounced, thus reducing viscous drag 
and increasing pressure drag. 

It may be observed in Figure 5 that the computed pressure drag is somewhat underpredicted at 
the lowest values of Re. In fact, at Re = 10 it is slightly negative. These unphysical values appear to 
reflect the difficulty of computing the pressure in low-Reynolds-number external flows in a 
bounded computational domain.'** l9 Any attempt to augment the size of the solution domain is 
countered by the need to maintain an adequate grid density at the cube surface. In particular, as 
Re+O( l), the calculated pressure depends increasingly on the accuracy of implementation of (13). 
Some attempt was made to increase the computational domain in the case of Re= 10. In these 
computations the viscous drag remained virtually unchanged, while the pressure drag increased 
towards zero. The result cited in Figure 5 used a mesh in which N,=89 and L,= 18. Un- 
fortunately, consideration of larger values of L, was not possible since with N ,  = 89 the storage 
limitation of the SDSC CRAY X-MP/48 was reached. Since the pressure calculation is done only 
after a converged solution for u and w is obtained, it appears that the use of the vector potential in 
low-Re flows has the inadvertent benefit of limiting the sensitivity of the computed solution to the 
effect of far field boundaries. 



884 R. RAUL, P. S. BERNARD AND F. T. BUCKLEY, JR. 

'1 

. O  

$ 0 -  
0 
0 SKIN-FRICTION DRAG u a a z-  a 

9- 

10.0 ,I' 20.0 30.0 40.0 60.0 70.0 80.0 0 0 . 0  100.0 
x-  

Figure 5. Computed skin friction and pressure drag versus Re 

Figures 6(a) to 6(d) give plots of the projection of the velocity field on two-dimensional slices 
through the middle of the cube. For the sake of brevity, only some planes from some of the cases 
are shown. As expected, the relaxation toward the free stream velocity at the outer boundaries is 
visible. The flow in the rear of the cube shows a recirculation zone, whose size increases with 
Reynolds number. A measure of wake length may be defined as the distance to the rear cube 
surface from the point on the x-axis where the flow reverses. Figure 7 shows the variation of wake 
size with Re. Notice that this varies linearly at low Re numbers as is the case with spheres.20 The 
absence of periodic shedding of vorticity in the present study is to be contrasted with the case of a 
sphere where the phenomenon commences at R e z 4 0 .  The difference is readily explained, 
however, by the presence of sharp edges in the cube geometry which strongly stabilize the location 
of the rear separation lines. It should be noted that periodic shedding was also not observed for 
several calculations performed on the full flow domain. 

Contours of the spanwise vorticity o3 in the xy plane through the middle of the cube are shown in 
Figures 8(a) to 8(d). Again only some of the cases are shown. It is seen that the maximum vorticity 
is generated at the front edges and subsequently convects downstream, the extent of this region 
increasing for higher Reynolds numbers. A second local maximum in vorticity occurs at the rear 
edges due to the peaking velocity gradient as the flow navigates past the sharp rear of the body. 

Figures 9(a) and 9(b) depict contours of the pressure coefficient on the cube surfaces. It is seen 
that there are large pressure gradients near all of the edges. The rear surface, being in the wake, 
contains a relatively large region of low pressure in a pattern which is strongly influenced by the 
presence of the corners. It is interesting to note that in both cases there is a region of low pressure 
coefficient on the side surfaces near the front edge, corresponding to an incipient recirculation 
zone which may be expected to develop at this location. The pressure patterns on the front and 
side also show evidence of slipping of the fluid stream around the sides of the cube corners. 
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Figure 6. Velocity field in xy plane through middle of cube at Re=(a) 10, (b) 30, (c) 60 and (4 100 
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Figure 7. Wake size versus Re 

Fig. 8(a-b) 
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Figure 8. Contours 

I 

I 

of spanwise vorticity oj in xy plane through middle of cube at Re = (a) 10, (b) 

1 0: 
30, (c) 60 and (d) 100 

\ /  

~ 

BACK 

" r 

0 

FRONT RE = 1 0 0  SIDE BACK 

Figure9. Contours of pressure coefficient on cube surfaces at Re=(a) 60 and (b) 100 
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6. CONCLUSIONS 

The three-dimensional incompressible laminar flow field corresponding to a cube imbedded in a 
uniform stream has been computed using the vorticity-vector potential formulation of the 
Navier-Stokes equation. An eight-colour SOR algorithm which is well suited to the vectorization 
properties of the CRAY X-MP/48 supercomputer was used to solve the implicit finite difference 
equations. The predicted drag ,agreed well with experimental data, including that obtained 
specifically for the present study in a cube drop experiment. Other characteristics of the computed 
solution were in accord with those expected for similar bluff body flow fields. In future studies 
turbulence effects will be included as the flow at high Reynolds number is investigated. 
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